\begin{align}
D^2 = \{(x,y) \in R^2 | x^2 + y^2 < 1 \}
\end{align}
D^2 = \{(x,y) \in R^2 | x^2 + y^2 < 1 \}
\end{align}
を考え、円盤の境界では無限遠と考えます。そしてこの世界では
$D^2$の境界と直交する円弧または直線
が「直線」であると定めます。
この空間では上の図のようにある点pを通るような「平行線」は無数に存在します。
2. 「曲がった」空間での幾何学
曲がった空間での幾何学を具体的に考えてみるために、以下のような単位球面
\begin{align}
S^2 = \{ (x,y,z) \in R^3 | x^2 + y^2 + ^2 = 1\}
\end{align}
S^2 = \{ (x,y,z) \in R^3 | x^2 + y^2 + ^2 = 1\}
\end{align}
での幾何学を考えてみましょう。球面上の位置を特定するときには$(x,y,z)$の座標を指定するよりも”地図”(atlas)を使って場所を指定します。
場所を指定する方法として、「緯度、経度」がありますよね。これは、球面上の点を
\begin{align}
r = \{ R\cos\phi\sin\theta,R\sin\phi\sin\theta,R\cos\theta \}
\end{align}
r = \{ R\cos\phi\sin\theta,R\sin\phi\sin\theta,R\cos\theta \}
\end{align}
と$(\theta, \phi)$でパラメタライズし、そのθ , πを指定することで、場所を決めているわけです。
次にこの球面上の3点を結んで、三角形を作ってみます。
この三角形、角度の和が180度にはなりません。球面三角形の内角の和は常に180度より大きいのです。平面の幾何学では成り立たないことが、曲がった幾何学を考えることで成り立つことがわかります。
今回はEuclid幾何学と非Euclid幾何学をみてきました。このような議論からどのように多様体に結びついていくのか、次の記事で説明していきたいと思います。
今回はEuclid幾何学と非Euclid幾何学をみてきました。このような議論からどのように多様体に結びついていくのか、次の記事で説明していきたいと思います。