
Follow-the-Regularized-Leader and Mirror Descent:
Equivalence Theorems and L1 Regularization

H. Brendan McMahan
Google, Inc.

Abstract

We prove that many mirror descent algo-
rithms for online convex optimization (such
as online gradient descent) have an equiva-
lent interpretation as follow-the-regularized-
leader (FTRL) algorithms. This observation
makes the relationships between many com-
monly used algorithms explicit, and provides
theoretical insight on previous experimental
observations. In particular, even though the
FOBOS composite mirror descent algorithm
handles L1 regularization explicitly, it has
been observed that the FTRL-style Regular-
ized Dual Averaging (RDA) algorithm is even
more effective at producing sparsity. Our re-
sults demonstrate that the key difference be-
tween these algorithms is how they handle
the cumulative L1 penalty. While FOBOS
handles the L1 term exactly on any given up-
date, we show that it is effectively using sub-
gradient approximations to the L1 penalty
from previous rounds, leading to less spar-
sity than RDA, which handles the cumulative
penalty in closed form. The FTRL-Proximal
algorithm, which we introduce, can be seen
as a hybrid of these two algorithms, and sig-
nificantly outperforms both on a large, real-
world dataset.

1 INTRODUCTION

We consider the problem of online convex optimization
and its application to online learning. On each round
t = 1, . . . , T , we pick a point xt ∈ Rn. A convex loss
function ft is then revealed, and we incur loss ft(xt).

In this work, we investigate the relationship between

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

two of the most important and successful families
of low-regret algorithms for online convex optimiza-
tion. On the surface, follow-the-regularized-leader al-
gorithms like Regularized Dual Averaging [Xiao, 2009]
appear quite different from gradient descent (and more
generally, mirror descent) style algorithms like FO-
BOS [Duchi and Singer, 2009]. However, here we show
that in the case of quadratic stabilizing regularization
there are essentially only two differences between the
algorithms:

• How they choose to center the additional strong
convexity used to guarantee low regret: RDA cen-
ters this regularization at the origin, while FO-
BOS centers it at the current feasible point.

• How they handle an arbitrary non-smooth regu-
larization function Ψ. This includes the mecha-
nism of projection onto a feasible set and how L1

regularization is handled.

To make these differences precise while also illustrat-
ing that these families are actually closely related, we
consider a third algorithm, FTRL-Proximal. When
the non-smooth term Ψ is omitted, this algorithm is
in fact identical to FOBOS. On the other hand, its up-
date is essentially the same as that of dual averaging,
except that additional strong convexity is centered at
the current feasible point (see Table 1).

Previous work has shown experimentally that Dual
Averaging with L1 regularization is much more effec-
tive at introducing sparsity than FOBOS [Xiao, 2009,
Duchi et al., 2010a]. Our equivalence theorems provide
a theoretical explanation for this: while RDA considers
the cumulative L1 penalty tλ‖x‖1 on round t, FOBOS
(when viewed as a global optimization using our equiv-
alence theorem) considers φ1:t−1·x+λ‖x‖1, where φs is
a certain subgradient approximation of λ‖xs‖1 (we use

φ1:t−1 as shorthand for
∑t−1
s=1 φs, and extend the nota-

tion to sums over matrices and functions as needed).

In Section 2, we consider general formulations of
mirror descent and follow-the-regularized-leader, and
prove theorems relating the two. In Section 3, we com-
pare FOBOS, RDA, and FTRL-Proximal experimen-



Follow-the-Regularized-Leader and Mirror Descent

Table 1: Summary of algorithms expressed as global optimizations against functions ft(x) = `t(x) + Ψ(x), where
Ψ(x) is an arbitrary and typically non-smooth convex function, for example Ψ(x) = λ‖x‖1. Each algorithm’s
objective has three components: (A) an approximation to `1:t based on the gradients gt = O`t(xt), (B) terms
for the non-smooth portion Ψ (the φt are certain subgradients of Ψ), and (C) additional strong convexity to
stabilize the algorithm, needed to guarantee low regret (the matrices Qs are generalized learning rates). These
four algorithms are the cross product of 2 design decisions: how the Ψ function is handled, and where additional
strong convexity is centered. See Section 1 for details and references.

(A) (B) (C)

FOBOS xt+1 = arg minx g1:t · x + φ1:t−1 · x+ Ψ(x) + 1
2

∑t
s=1 ‖Q

1
2
s (x− xs)‖22

AOGD xt+1 = arg minx g1:t · x + φ1:t−1 · x+ Ψ(x) + 1
2

∑t
s=1 ‖Q

1
2
s (x− 0)‖22

RDA xt+1 = arg minx g1:t · x + tΨ(x) + 1
2

∑t
s=1 ‖Q

1
2
s (x− 0)‖22

FTRL-Proximal xt+1 = arg minx g1:t · x + tΨ(x) + 1
2

∑t
s=1 ‖Q

1
2
s (x− xs)‖22

tally. The FTRL-Proximal algorithm behaves very
similarly to RDA in terms of sparsity, confirming that
it is the cumulative subgradient approximation to the
L1 penalty that causes decreased sparsity in FOBOS.

In recent years, online gradient descent and stochas-
tic gradient descent (its batch analogue) have proven
themselves to be excellent algorithms for large-scale
machine learning. In the simplest case FTRL-
Proximal is identical, but when L1 or other non-
smooth regularization is needed, FTRL-Proximal sig-
nificantly outperforms FOBOS, and can outperform
RDA as well. Since the implementations of FTRL-
Proximal and RDA only differ by a few lines of code,
we recommend trying both and picking the one with
the best performance in practice.

Algorithms We begin by establishing notation and
introducing more formally the algorithms we consider.
While our theorems apply to more general versions
of these algorithms, here we focus on the specific in-
stances we use in our experiments. We consider loss
functions ft(x) = `t(x)+Ψ(x), where Ψ is a fixed (typ-
ically non-smooth) regularization function. In a typ-
ical online learning setting, given an example (θt, yt)
where θt ∈ Rn is a feature vector and yt ∈ {−1, 1} is
a label, we take `t(x) = loss(θt · x, yt). For example,
for logistic regression we use log-loss, loss(θt · x, yt) =
log(1 + exp(−ytθt ·x)). We use the standard reduction
to linear functions, letting gt = O`t(xt). All of the al-
gorithms we consider support composite updates (con-
sideration of Ψ explicitly rather than through a gra-
dient Oft(xt)) as well as positive semi-definite matrix
learning rates Q which can be chosen adaptively (the
interpretation of these matrices as learning rates will
be clarified in Section 2).

The first algorithm we consider is from the gradient-

descent family, namely FOBOS, which plays

xt+1 = arg min
x

gt · x+ λ‖x‖1 +
1

2
‖Q

1
2
1:t(x− xt)‖22.

We state this algorithm implicitly as an optimization,
but a gradient-descent style closed-form update can
also be given [Duchi and Singer, 2009]. The algorithm
was described in this form as a specific composite-
objective mirror descent (COMID) algorithm by Duchi
et al. [2010b].

The Regularized Dual Averaging (RDA) algorithm of
Xiao [2009] plays

xt+1 = arg min
x

g1:t · x+ tλ‖x‖1 +
1

2

t∑
s=1

‖Q
1
2
s (x− 0)‖22.

In contrast to FOBOS, the optimization is over the
sum g1:t rather than just the most recent gradient gt.
We will show (in Theorem 4) that when λ = 0 and
the `t are not strongly convex, this algorithm is in fact
equivalent to the Adaptive Online Gradient Descent
(AOGD) algorithm [Bartlett et al., 2007].

The FTRL-Proximal algorithm plays

xt+1 = arg min
x

g1:t ·x+ tλ‖x‖1 +
1

2

t∑
s=1

‖Q
1
2
s (x−xs)‖22.

This algorithm was introduced in [McMahan and
Streeter, 2010], but without support for an explicit
Ψ. Regret bounds for the more general algorithm that
handles a fixed Ψ function are proved in [McMahan,
2011].

One of our principle contributions is showing the close
connection between all four of these algorithms; Ta-
ble 1 summarizes the key results from Theorems 2 and
4, writing AOGD and FOBOS in a form that makes
the relationship to RDA and FTRL-Proximal explicit.



H. Brendan McMahan

In our analysis, we will consider arbitrary convex func-

tions Rt and R̃t in place of the 1
2‖Q

1
2
t x‖22 and 1

2‖Q
1
2
t (x−

xt)‖22 that appear here, as well as arbitrary convex
Ψ(x) in place of λ‖x‖1. For all these algorithms,
the matrices Qt are chosen adaptively. In the exper-
iments, we use per-coordinate adaptation where the
Qt are diagonal such that Q1:t = diag(σ̄t,1, . . . , σ̄t,n)

with σ̄t,i = 1
γ

√∑t
s=1 g

2
t,i. See McMahan and Streeter

[2010] and Duchi et al. [2010a] for details. Since all of
the algorithms benefit from this approach, we use the
more familiar names of the original algorithms, even
though in most cases they were introduced with scalar
learning rates. The γ is learning-rate scale parameter,
which we tune in experiments.

Efficient Implementations All of these algorithms
can be implemented efficiently, in that the update for a
gt with K nonzeros can be done in O(K) time. Both
FTRL-Proximal and RDA can be implemented (for
diagonal learning rates) by storing two floating-point
values for each attribute, a quadratic term and a linear
term. When xt,i is needed, it can be solved for lazily
in closed form (see for example [Xiao, 2009]).

For FOBOS, the presence of λ‖x‖1 in the update im-
plies all coefficients xt,i needs to be updated even when
gt,i = 0. However, by storing the index t of the last
round on which gt,i was nonzero, the L1 part of the
update can be made lazy [Duchi and Singer, 2009].

Feasible Sets In some applications, we may be re-
stricted to only play points from a restricted convex
feasible set F ⊆ Rn, for example, the set of (fractional)
paths between two nodes in a graph. Since all the al-
gorithms we consider support composite updates, this
is accomplished for free by choosing Ψ to be the indi-
cator function ΨF on F , that is ΨF (x) = 0 if x ∈ F ,
and ∞ otherwise. It is straightforward to verify that
arg minx∈Rn g1:t · x+R1:t(x) + ΨF (x) is equivalent to
arg minx∈F g1:t · x + R1:t(x), and so in this work we
can generalize (for example) the results of [McMahan
and Streeter, 2010] for specific feasible sets without ex-
plicitly discussing F , and instead considering arbitrary
extended convex functions Ψ.

Notation and Technical Background We write
x>y or x · y for the inner product between x, y ∈ Rn.
The ith entry in a vector x is denoted xi ∈ R; when we
have a sequence of vectors xt ∈ Rn indexed by time,
the ith entry is xt,i ∈ R. For positive semi-definite B,
we write B1/2 for the square root of B, the unique X ∈
Sn+ such that XX = B, so ‖B 1

2x‖22 = x>Bx. Unless
otherwise stated, convex functions are assumed to be
extended, with domain Rn and range R∪{∞} (see, for
example [Boyd and Vandenberghe, 2004, 3.1.2]). For

a convex function f , we let ∂f(x) denote the set of
subgradients of f at x (the subdifferential of f at x).
By definition, g ∈ ∂f(x) means f(y) ≥ f(x)+g>(y−x)
for all y. When f is differentiable, we write Of(x) for
the gradient of f at x. In this case, ∂f(x) = {Of(x)}.
All mins and argmins are over Rn unless otherwise
noted. We make frequent use of the following standard
results, summarized as follows:

Theorem 1. Let R : Rn → R be strongly con-
vex with continuous first partial derivatives, and let
Ψ : Rn → R ∪ {∞} be an arbitrary convex func-
tion. Define g(x) = R(x) + Ψ(x). Then, there exists a
unique pair (x∗, φ∗) such that both

φ∗ ∈ ∂Ψ(x∗)

and
x∗ = arg min

x
R(x) + φ∗ · x.

Further, this x∗ is the unique minimizer of g.

Note that an equivalent condition to x∗ =
arg minxR(x) + φ∗ · x is OR(x∗) + φ∗ = 0.

Proof. Since R is strongly convex, g is strongly convex,
and so has a unique minimizer x∗ (see for example,
[Boyd and Vandenberghe, 2004, 9.1.2]). Let r = OR.
Since x∗ is a minimizer of g, there must exist a φ∗ ∈
∂Ψ(x∗) such that r(x∗)+φ∗ = 0, as this is a necessary
(and sufficient) condition for 0 ∈ ∂g(x∗). It follows
that x∗ = arg minxR(x) + φ∗ · x, as r(x∗) + φ∗ is the
gradient of this objective at x∗. Suppose some other
(x′, φ′) satisfies the conditions of the theorem. Then,
r(x′) + φ′ = 0, and so 0 ∈ ∂g(x′), and so x′ is a
minimizer of g. Since this minimizer is unique, x′ =
x∗, and φ′ = −r(x∗) = φ∗.

2 MIRROR DESCENT FOLLOWS
THE LEADER

In this section we consider the relationship between
mirror descent algorithms (the simplest example being
online gradient descent) and FTRL algorithms. Let
ft(x) = gt · x + Ψ(x) where gt ∈ ∂`t(xt). Let R1 be
strongly convex, with all the Rt convex. We assume
that minxR1(x) = 0, and assume that x = 0 is the
unique minimizer unless otherwise noted.

Follow The Regularized Leader (FTRL) The
simplest follow-the-regularized-leader algorithm plays

xt+1 = arg min
x

g1:t · x+
σ1:t
2
‖x‖22. (1)

For t = 1, we typically take x1 = 0. We can generalize
1
2‖x‖

2
2 to an arbitrary strongly convex R by:

xt+1 = arg min
x

g1:t · x+ σ1:tR(x) (2)



Follow-the-Regularized-Leader and Mirror Descent

We could choose σ1:t independently for each t, but we
need σ1:t to be non-decreasing in t, and so writing
it as a sum of the per-round increments σt ≥ 0 is
reasonable. The most general update is

xt+1 = arg min
x

g1:t · x+R1:t(x). (3)

where we add an additional convex function Rt on each
round. Letting Rt(x) = σtR(x) recovers the previous
formulation.

When arg minx∈Rn Rt(x) = 0, we call the functions Rt
(and associated algorithms) origin-centered. We can
also define proximal versions of FTRL1 that center
additional regularization at the current point rather
than at the origin. In this section, we write R̃t(x) =
Rt(x − xt) and reserve the Rt notation for origin-
centered functions. Note that R̃t is only needed to
select xt+1, and xt is known to the algorithm at this
point, ensuring the algorithm only needs access to
the first t loss functions when computing xt+1 (as re-
quired). The general update is

xt+1 = arg min
x

g1:t · x+ R̃1:t(x), (4)

In the simplest case, this becomes

xt+1 = arg min
x

g1:t · x+

t∑
s=1

σs
2
‖x− xs‖22. (5)

Mirror Descent The simplest version of mirror de-
scent is gradient descent using a constant step size η,
which plays

xt+1 = xt − ηgt = −ηg1:t. (6)

In order to get low regret, T must be known in advance
so η can be chosen accordingly (or a doubling trick can
be used). But, since there is a closed-form solution for
the point xt+1 in terms of g1:t and η, we generalize
this to a “revisionist” algorithm that on each round
plays the point that gradient descent with constant
step size would have played if it had used step size ηt
on rounds 1 through t − 1. That is, xt+1 = −ηtg1:t.
When Rt(x) = σt

2 ‖x‖
2
2 and ηt = 1

σ1:t
, this is equivalent

to the FTRL of Equation (1).

In general, we will be more interested in gradient de-
scent algorithms which use an adaptive step size that
depends (at least) on the round t. Using a variable
step size ηt on each round, gradient descent plays:

xt+1 = xt − ηtgt. (7)

1We adapt the name “proximal” from [Do et al., 2009],
but note that while similar proximal regularization func-
tions were considered, that paper deals only with gradient
descent algorithms, not FTRL.

An intuition for this update comes from the fact it can
be re-written as

xt+1 = arg min
x

gt · x+
1

2ηt
‖x− xt‖22.

This version captures the notion (in online learning
terms) that we don’t want to change our hypothesis
xt too much (for fear of predicting badly on examples
we have already seen), but we do want to move in a di-
rection that decreases the loss of our hypothesis on the
most recently seen example (which is approximated by
the linear function gt).

Mirror descent algorithms use this intuition, replacing
the L2-squared penalty with an arbitrary Bregman di-
vergence. For a differentiable, strictly convex R, the
corresponding Bregman divergence is

BR(x, y) = R(x)−
(
R(y) + OR(y) · (x− y)

)
for any x, y ∈ Rn. We then have the update

xt+1 = arg min
x

gt · x+
1

ηt
BR(x, xt), (8)

or explicitly (by setting the gradient of (8) to zero),

xt+1 = r−1(r(xt)− ηtgt) (9)

where r = OR. Letting R(x) = 1
2‖x‖

2
2 so that

BR(x, xt) = 1
2‖x − xt‖22 recovers the algorithm of

Equation (7). One way to see this is to note that
r(x) = r−1(x) = x in this case.

We can generalize this even further by adding a new
strongly convex function Rt to the Bregman diver-
gence on each round. Namely, let

B1:t(x, y) =
t∑

s=1

BRs
(x, y),

so the update becomes

xt+1 = arg min
x

gt · x+ B1:t(x, xt) (10)

or equivalently xt+1 = (r1:t)
−1(r1:t(xt) − gt) where

r1:t =
∑t
s=1 ORt = OR1:t and (r1:t)

−1 is the inverse of
r1:t. The step size ηt is now encoded implicitly in the
choice of Rt.

Composite-objective mirror descent (COMID) [Duchi
et al., 2010b] handles Ψ functions2 as part of the ob-
jective on each round: ft(x) = gt ·x+Ψ(x). Using our
notation, the COMID update is

xt+1 = arg min
x

ηgt · x+ B(x, xt) + ηΨ(x),

2Our Ψ is denoted r in [Duchi et al., 2010b]



H. Brendan McMahan

which can be generalized to

xt+1 = arg min
x

gt · x+ Ψ(x) + B1:t(x, xt), (11)

where the learning rate η has been rolled into the def-
inition of R1, . . . , Rt. When Ψ is chosen to be the
indicator function on a convex set, COMID reduces to
standard mirror descent with greedy projection.

2.1 An Equivalence Theorem for Proximal
Regularization

In Theorem 2, we show that mirror descent algorithms
can be viewed as FTRL algorithms.

Theorem 2. Let Rt be a sequence of differentiable
origin-centered convex functions (ORt(0) = 0), with
R1 strongly convex, and let Ψ be an arbitrary convex
function. Let x1 = x̂1 = 0. For a sequence of loss
functions ft(x) = gt · x + Ψ(x), let the sequence of
points played by the composite-objective mirror descent
algorithm be

x̂t+1 = arg min
x

gt · x+ Ψ(x) + B̃1:t(x, x̂t), (12)

where R̃t(x) = Rt(x − x̂t), and B̃t = BR̃t
, so B̃1:t is

the Bregman divergence with respect to R̃1 + · · ·+ R̃t.
Consider the alternative sequence of points xt played
by a proximal FTRL algorithm, applied to these same
ft, defined by

xt+1 = arg min
x

(g1:t+φ1:t−1) ·x+R̃1:t(x)+Ψ(x) (13)

where φt ∈ ∂Ψ(xt+1) such that g1:t + φ1:t−1 +
OR̃1:t(xt+1)+φt = 0. Then, these algorithms are equiv-
alent, in that xt = x̂t for all t > 0.

The Bregman divergences used by mirror descent in
the theorem are with respect to the proximal functions
R̃1:t, whereas typically (as in Equation (10)) these
functions would not depend on the previous points

played. We will show when Rt(x) = 1
2‖Q

1
2
t x‖22, this

issue disappears. Considering arbitrary Ψ functions
also complicates the theorem statement somewhat.
The following Corollary sidesteps these complexities,
to state a simple direct equivalence result:

Corollary 3. Let ft(x) = gt · x. Then, the following
algorithms play identical points:

• Gradient descent with positive semi-definite learn-
ing rates Qt, defined by:

xt+1 = xt −Q−11:t gt.

• FTRL-Proximal with regularization functions

R̃t(x) = 1
2‖Q

1
2
t (x− xt)‖22, which plays

xt+1 = arg min
x

g1:t · x+ R̃1:t(x).

Proof. Let Rt(x) = 1
2x
>Qtx. It is easy to show that

R1:t and R̃1:t differ by only a linear function, and so
(by a standard result) B1:t and B̃1:t are equal, and
simple algebra reveals

B1:t(x, y) = B̃1:t(x, y) =
1

2
‖Q

1
2
1:t(x− y)‖22.

Then, it follows from Equation (9) that the first algo-
rithm is a mirror descent algorithm using this Bregman
divergence. Taking Ψ(x) = 0 and hence φt = 0, the
result follows from Theorem 2.

Extending the approach of the corollary to FOBOS,
we see the only difference between that algorithm
and FTRL-Proximal is that FTRL-Proximal optimizes
over tΨ(x), whereas in Equation (13) we optimize over
φ1:t−1 ·x+Ψ(x) (see Table 1). Thus, FOBOS is equiv-
alent to FTRL-Proximal, except that FOBOS approx-
imates all but the most recent Ψ function by a subgra-
dient.

The behavior of FTRL-Proximal can thus be different
from COMID when a non-trivial Ψ is used. While we
are most concerned with the choice Ψ(x) = λ‖x‖1, it is
also worth considering what happens when Ψ is the in-
dicator function on a feasible set F . Then, Theorem 2
shows that mirror descent on ft(x) = gt · x + Ψ(x)
(equivalent to COMID in this case) approximates pre-
viously seen Ψs by their subgradients, whereas FTRL-
Proximal optimizes over Ψ explicitly. In this case, it
can be shown that the mirror-descent update corre-
sponds to the standard greedy projection [Zinkevich,
2003], whereas FTRL-Proximal corresponds to a lazy
projection [McMahan and Streeter, 2010].3

Proof of Theorem 2. The proof is by induction. For
the base case, we have x1 = x̂1 = 0. For the induction
step, assume xt = x̂t. Theorem 1 guarantees the ex-
istence of a suitable φt for use in the update of Equa-
tion (13), and so in particular there exists a unique
φt−1 ∈ ∂Ψ(xt) such that

g1:t−1 + φ1:t−2 + OR̃1:t−1(xt) + φt−1 = 0,

and so applying the induction hypothesis,

−OR̃1:t−1(x̂t) = g1:t−1 + φ1:t−1. (14)

3Zinkevich [2004, Sec. 5.2.3] describes a different lazy
projection algorithm, which requires an appropriately cho-
sen constant step-size to get low regret. FTRL-Proximal
does not suffer from this problem, because it always centers
the additional regularization Rt at points in F , whereas our
results show the algorithm of Zinkevich centers the addi-
tional regularization outside of F , at the optimum of the
unconstrained optimization. This leads to the high regret
in the case of standard adaptive step sizes, because the al-
gorithm can get “stuck” too far outside the feasible set to
make it back to the other side.



Follow-the-Regularized-Leader and Mirror Descent

Then, starting from Equation (12),

x̂t+1 = arg min
x

gt · x+ B̃1:t(x, x̂t) + Ψ(x).

We now manipulate this expression for x̂t+1. Applying
Theorem 1, for some φ′t ∈ ∂Ψ(x̂t+1),

x̂t+1 = arg min
x

gt · x+ B̃1:t(x, x̂t) + φ′t · x

= arg min
x

gt · x+ R̃1:t(x)− R̃1:t(xt)

− OR̃1:t(x̂t)(x− xt) + φ′t · x Defn. of B̃1:t

Dropping terms independent of x,

= arg min
x

gt · x+ R̃1:t(x)− OR̃1:t(x̂t)x+ φ′t · x

= arg min
x

gt · x+ R̃1:t(x)− OR̃1:t−1(x̂t)x+ φ′t · x

since OR̃t(x̂t) = 0, and then using Eq (14)

= arg min
x

gt · x+ R̃1:t(x) + (g1:t−1 + φ1:t−1)x+ φ′t · x.

We conclude x̂t+1 = xt+1, as (x̂t+1, φ
′
t) satisfy the con-

ditions of Theorem 1 with respect to the objective in
the optimization defining xt+1.

2.2 An Equivalence Theorem for
Origin-Centered Regularization

For the moment, suppose Ψ(x) = 0. So far, we have
shown conditions under which gradient descent on
ft(x) = gt ·x with an adaptive step size is equivalent to
follow-the-proximally-regularized-leader. In this sec-
tion, we show that mirror descent on the regularized
functions fRt (x) = gt · x+Rt(x), with a certain natu-
ral step-size, is equivalent to a follow-the-regularized-
leader algorithm with origin-centered regularization.

The algorithm we consider was introduced by Bartlett
et al. [2007, Theorem 2.1]. Letting Rt(x) = σt

2 ‖x‖
2
2

and fixing ηt = 1
σ1:t

, their adaptive online gradient
descent algorithm is

xt+1 = xt − ηtOfRt (xt) = xt − ηt(gt + σtxt)).

We show (in Corollary 5) that this algorithm is iden-
tical to follow-the-leader on the functions fRt (x) =
gt · x + Rt(x), an algorithm that is minimax opti-
mal in terms of regret against quadratic functions like
fR [Abernethy et al., 2008]. As with the previous the-
orem, the difference between the two is how they han-
dle an arbitrary Ψ. If one uses R̃t(x) = σt

2 ‖x − xt‖
2
2

in place of Rt(x), this algorithm reduces to standard
online gradient descent [Do et al., 2009].

The key observation of [Bartlett et al., 2007] is that
if the underlying functions `t have strong convexity,

we can roll that into the Rt functions, and so intro-
duce less additional stabilizing regularization, lead-
ing to regret bounds that interpolate between

√
T for

linear functions and log T for strongly convex func-
tions. Their work did not consider composite objec-
tives (Ψ terms), but our equivalence theorems show
their adaptivity techniques can be lifted to algorithms
like RDA and FTRL-Proximal that handle such non-
smooth functions more effectively than mirror descent
formulations.

We will prove our equivalence theorem for a general-
ized versions of the algorithm. Instead of vanilla gra-
dient descent, we analyze the mirror descent algorithm
of Equation (11), but now gt is replaced by OfRt (xt),
and we add the composite term Ψ(x).

Theorem 4. Let ft(x) = gt · x, and let fRt (x) =
gt ·x+Rt(x), where Rt is a differentiable convex func-
tion. Let Ψ be an arbitrary convex function. Con-
sider the composite-objective mirror-descent algorithm
which plays

x̂t+1 = arg min
x

OfRt (x̂t) · x+ Ψ(x) + B1:t(x, x̂t), (15)

and the FTRL algorithm which plays

xt+1 = arg min
x

fR1:t(x) + φ1:t−1 · x+ Ψ(x), (16)

for φt ∈ ∂Ψ(xt+1) such that g1:t + OR1:t(xt+1) +
φ1:t−1 + φt = 0. If both algorithms play x̂1 = x1 = 0,
then they are equivalent, in that xt = x̂t for all t > 0.

The most important corollary of this result is that it
lets us add the Adaptive Online Gradient Descent al-
gorithm to Table 1. It is also instructive to specialize
to the simplest case when Ψ(x) = 0 and the regular-
ization is quadratic:

Corollary 5. Let ft(x) = gt · x and fRt (x) = gt · x +
σt

2 ‖x‖
2
2. Then following update algorithms play identi-

cal points:

• FTRL, which plays xt+1 = arg minx f
R
1:t(x).

• Gradient descent on the functions fR using the
step size ηt = 1

σ1:t
, which plays

xt+1 = xt − ηtOfRt (xt)

• Revisionist constant-step size gradient descent
with ηt = 1

σ1:t
, which plays

xt+1 = −ηtg1:t.

The last equivalence in the corollary follows from de-
riving the closed form for the point played by FTRL.
We now proceed to the proof of the general theorem:



H. Brendan McMahan

Proof of Theorem 4. The proof is by induction, using
the induction hypothesis x̂t = xt. The base case for
t = 1 follows by inspection. Suppose the induction
hypothesis holds for t; we will show it also holds for
t+ 1. Again let rt = ORt and consider Equation (16).
Since R1 is assumed to be strongly convex, applying
Theorem 1 gives us that xt is the unique solution to
OfR1:t−1(xt) + φ1:t−1 = 0 and so g1:t−1 + r1:t−1(xt) +
φ1:t−1 = 0. Then, by the induction hypothesis,

−r1:t−1(x̂t) = g1:t−1 + φ1:t−1. (17)

Now consider Equation (15). Since R1 is strongly con-
vex, B1:t(x, x̂t) is strongly convex in its first argument,
and so by Theorem 1 we have that x̂t+1 and some
φ′t ∈ ∂Ψ(x̂t+1) are the unique solution to

OfRt (x̂t) + φ′t + r1:t(x̂t+1)− r1:t(x̂t) = 0,

since OpBR(p, q) = r(p) − r(q). Beginning from this
equation,

0 = OfRt (x̂t) + φ′t + r1:t(x̂t+1)− r1:t(x̂t)
= gt + rt(x̂t) + φ′t + r1:t(x̂t+1)− r1:t(x̂t)
= gt + r1:t(x̂t+1) + φ′t − r1:t−1(x̂t)

= gt + r1:t(x̂t+1) + φ′t + g1:t−1 + φ1:t−1 Eq (17)

= g1:t + r1:t(x̂t+1) + φ1:t−1 + φ′t.

Applying Theorem 1 to Equation (16), (xt+1, φt) are
the unique pair such that

g1:t + r1:t(xt+1) + φ1:t−1 + φt = 0

and φt ∈ ∂Ψ(xt+1), and so we conclude x̂t+1 = xt+1

and φ′t = φt.

3 EXPERIMENTS

We compare FOBOS, FTRL-Proximal, and RDA on
a variety of datasets to illustrate the key differences
between the algorithms, from the point of view of in-
troducing sparsity with L1 regularization. In all ex-
periments we optimize log-loss (see Section 1).

Binary Classification We compare FTRL-
Proximal, RDA, and FOBOS on several public
datasets. We used four sentiment classification data
sets (Books, Dvd, Electronics, and Kitchen), available
from [Dredze, 2010], each with 1000 positive examples
and 1000 negative examples,4 as well as the scaled
versions of the rcv1.binary (20,242 examples) and
news20.binary (19,996 examples) data sets from
LIBSVM [Chang and Lin, 2010].

4We used the features provided in processed acl.tar.gz,
and scaled each vector of counts to unit length.

All our algorithms use a learning rate scaling parame-
ter γ (see Section 1). The optimal choice of this param-
eter can vary somewhat from dataset to dataset, and
for different settings of the L1 regularization strength
λ. For these experiments, we first selected the best
γ for each (dataset, algorithm, λ) combination on a
random shuffling of the dataset. We did this by train-
ing a model using each possible setting of γ from a
reasonable grid (12 points in the range [0.3, 1.9]), and
choosing the γ with the highest online AUC. We then
fixed this value, and report the average AUC over 5
different shufflings of each dataset. We chose the area
under the ROC curve (AUC) as our accuracy metric
as we found it to be more stable and have less vari-
ance than the mistake fraction. However, results for
classification accuracy were qualitatively very similar.

Ranking Search Ads by Click-Through-Rate
We collected a dataset of about 1,000,000 search ad
impressions from a large search engine,5 correspond-
ing to ads shown on a small set of search queries. We
formed examples with a feature vector θt for each ad
impression, using features based on the text of the ad
and the query, as well as where on the page the ad
showed. The target label yt is 1 if the ad was clicked,
and -1 otherwise.

Smaller learning-rates worked better on this dataset;
for each (algorithm, λ) combination we chose the best
γ from 9 points in the range [0.03, 0.20]. Rather than
shuffling, we report results for a single pass over the
data using the best γ, processing the events in the or-
der the queries actually occurred. We also set a lower
bound for the stabilizing terms σ̄t of 20.0, (correspond-
ing to a maximum learning rate of 0.05), as we found
this improved accuracy somewhat. Again, qualitative
results did not depend on this choice.

Results Table 2 reports AUC accuracy (larger num-
bers are better), followed by the density of the final
predictor xT (number of non-zeros divided by the to-
tal number of features present in the training data).
We measured accuracy online, recording a prediction
for each example before training on it, and then com-
puting the AUC for this set of predictions. For these
experiments, we fixed λ = 0.05/T (where T is the num-
ber of examples in the dataset), which was sufficient
to introduce non-trivial sparsity. Overall, there is very
little difference between the algorithms in terms of ac-
curacy, with RDA having a slight edge for these choices
for λ. Our main point concerns the sparsity numbers.
It has been shown before that RDA outperforms FO-

5While we report results on a single dataset, we re-
peated the experiments on two others, producing quali-
tatively the same results. No user-specific data was used
in these experiments.



Follow-the-Regularized-Leader and Mirror Descent

Table 2: AUC (area under the ROC curve) for online predictions and sparsity in parentheses. The best value
for each dataset is bolded. For these experiments, λ was fixed at 0.05/T .

Data FTRL-Proximal RDA FOBOS

books 0.874 (0.081) 0.878 (0.079) 0.877 (0.382)
dvd 0.884 (0.078) 0.886 (0.075) 0.887 (0.354)
electronics 0.916 (0.114) 0.919 (0.113) 0.918 (0.399)
kitchen 0.931 (0.129) 0.934 (0.130) 0.933 (0.414)
news 0.989 (0.052) 0.991 (0.054) 0.990 (0.194)
rcv1 0.991 (0.319) 0.991 (0.360) 0.991 (0.488)
web search ads 0.832 (0.615) 0.831 (0.632) 0.832 (0.849)

Figure 1: Sparsity versus accuracy tradeoffs on the
20 newsgroups dataset. Sparsity increases on the y-
axis, and AUC increases on the x-axis, so the top right
corner gets the best of both worlds. FOBOS is pareto-
dominated by FTRL-Proximal and RDA.

BOS in terms of sparsity. The question then is how
does FTRL-Proximal perform, as it is a hybrid of the
two, selecting additional stabilization Rt in the man-
ner of FOBOS, but handling the L1 regularization in
the manner of RDA. These results make it very clear:
it is the treatment of L1 regularization that makes the
key difference for sparsity, as FTRL-Proximal behaves
very comparably to RDA in this regard.

Fixing a particular value of λ, however, does not tell
the whole story. For all these algorithms, one can trade
off accuracy to get more sparsity by increasing the λ
parameter. The best choice of this parameter depends
on the application as well as the dataset. For exam-
ple, if storing the model on an embedded device with
expensive memory, sparsity might be relatively more
important. To show how these algorithms allow dif-
ferent tradeoffs, we plot sparsity versus AUC for the
different algorithms over a range of λ values. Figure 1
shows the tradeoffs for the 20 newsgroups dataset, and
Figure 2 shows the tradeoffs for web search ads.

In all cases, FOBOS is pareto-dominated by RDA and
FTRL-Proximal. These two algorithms are almost
indistinguishable in the their tradeoff curves on the

Figure 2: The same comparison as the previous
figure, but on a large search ads ranking dataset.
On this dataset, FTRL-Proximal significantly outper-
forms both other algorithms.

newsgroups dataset, but on the ads dataset FTRL-
Proximal significantly outperforms RDA as well.6

Conclusions We have shown a close relationship be-
tween certain mirror descent algorithms like FOBOS,
and FTRL-style algorithms like RDA. This was accom-
plished by expressing the mirror descent update as a
global optimization in the style of FTRL. This refor-
mulation provides a clear characterization of the dif-
ference in how L1 regularization (and in general, an ar-
bitrary non-smooth regularizer Ψ) is handled by these
algorithms. Experimental results demonstrate that it
is this difference that accounts for the superior sparsity
produced by RDA. We also introduced the composite-
objective FTRL-Proximal algorithm that can be seen
as a hybrid between the other two, centering stabilizing
regularization in the manner of FOBOS, but handling
Ψ (an in particular, L1 regularization) in the manner
of RDA. We showed that this algorithm can outper-
form both of the others on a large, real-world dataset.

6The improvement is more significant than it first ap-
pears. A simple model with only features based on where
the ads were shown achieves an AUC of nearly 0.80, and
the inherent uncertainty in the clicks means that even pre-
dicting perfect probabilities would produce an AUC signif-
icantly less than 1.0, perhaps 0.85.



H. Brendan McMahan

Acknowledgments

The author wishes to thank Matt Streeter for numer-
ous helpful discussions and comments, and Fernando
Pereira for a conversation that led to the focus on the
choice Ψ(x) = ‖x‖1.

References

Jacob Abernethy, Peter L. Bartlett, Alexander
Rakhlin, and Ambuj Tewari. Optimal strategies and
minimax lower bounds for online convex games. In
COLT, 2008.

Peter Bartlett, Elad Hazan, and Alexander Rakhlin.
Adaptive online gradient descent. Technical Re-
port UCB/EECS-2007-82, EECS Department, Uni-
versity of California, Berkeley, Jun 2007.

Stephen Boyd and Lieven Vandenberghe. Convex Op-
timization. Cambridge University Press, New York,
NY, USA, 2004. ISBN 0521833787.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM
data sets. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/,
2010.

Chuong B. Do, Quoc V. Le, and Chuan-Sheng Foo.
Proximal regularization for online and batch learn-
ing. In ICML, 2009.

Mark Dredze. Multi-domain sentiment dataset (v2.0).
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/, 2010.

John Duchi and Yoram Singer. Efficient learning using
forward-backward splitting. In NIPS, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and
stochastic optimization. In COLT, 2010a.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and
Ambuj Tewari. Composite objective mirror descent.
In COLT, 2010b.

H. Brendan McMahan. A unified analysis of regular-
ized dual averaging and composite mirror descent
with implicit updates. Submitted, 2011.

H. Brendan McMahan and Matthew Streeter. Adap-
tive bound optimization for online convex optimiza-
tion. In COLT, 2010.

Lin Xiao. Dual averaging method for regularized
stochastic learning and online optimization. In
NIPS, 2009.

Martin Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In ICML,
2003.

Martin Zinkevich. Theoretical guarantees for algo-
rithms in multi-agent settings. PhD thesis, Pitts-
burgh, PA, USA, 2004.


